Mechanisms of Fiber-Induced Lung Disease

Vincent Castranova, Ph.D.

National Institute for Occupational Safety and Health Morgantown, West Virginia

Physiochemical Factors Affecting Fiber Toxicity

I. Durability – dissolution, breakage

II. Dimensions

Diameter – deposition Length – retention

Biopersistence = durability + failed clearance

III. Surface Activity

- a. Generation of reactive species
- b. Surface area
- c. Role of length frustrated phagocytosis in activation of reactive species production

Problem

 Difficulty distinguishing between contributions of dimension vs. chemistry.

Approach

 Use of dielectrophoresis to obtain fiber samples of discrete lengths.

Dielectrophoresis System

Fiber Uptake by Rat AM

Frustrated Phagocytosis

Activated AM and Frustrated Phagocytosis

Lactate Dehydrogenase Release

Lucigenin Chemiluminescence

Human AM Lactate Dehydrogenase Release

Human AM Luminol Chemiluminescence

Fiber Uptake by Human AM

В.

Lactate Dehydrogenase Release

Apoptosis

Conclusion I

- A. Dielectrophoresis is an effective method to separate fibers by length.
- B. With rat AM, fibers \leq 7 μ m in length are completely engulfed.
- C. With rat AM, fibers \geq 17 μ m in length are not completely engulfed, i.e., frustrated phagocytosis.
- D. With rat AM, glass fibers \geq 17 μ m in length are approximately 2 orders of magnitude more toxic than glass fibers \leq 7 μ m in length.
- E. With human AM, glass fibers \leq 20 μ m in length are completely engulfed, i.e., frustrated phagocytosis was not observed.
- F. With human AM, glass fibers 8-20 μ m in length exhibited equal toxicity.
- G. With rat AM, chrysotile asbestos fibers were more toxic than glass or ceramic fibers of equal length

Time Course of TNF-α Production in RAW 264.7 Cells Exposed to Glass Fibers

Dose-dependent Response of TNF-α Production with Glass Fibers

Activation of TNF-α Gene Promoter by the Glass Fibers

Activation of the DNA Binding Activity of NF-κB by the Glass Fibers

Characterization of NF-kB Complexes by Oligonucleotide Competition and Antibody Supershift

Suppression of NF-κB Binding Activity by NAC or SN50

Inhibition of the TNF- α Gene Promoter by NAC or SN50

THE THE THE THE THE

Inhibition of Fiber-induced TNF-\alpha Production by NAC or SN50

Inhibition of TNF- α Production by MAP Kinase Inhibitors

Phosphorylation of MAP Kinases p38 and ERK

Inhibition of TNF-α Promoter Activity by MAP Kinase Inhibitors

Activation of DNA Binding Activity of AP-1 in Rat **Alveolar Macrophages by Glass Fibers** Competition B Control AP-1→ AP-1 → Free Free > probe

Conclusion II

A. Exposure of macrophages to glass fibers results in:

NF κ B activation phosphorylation of p38 and ERK AP-1 activation activation of the TNF- α gene promotor TNF- α production

- B. Fiber-induced activation of the TNF- α gene promotor and TNF- α production is dependent on MAP kinase activity and NF κ B.
- C. Antioxidants inhibit fiber-induced activation of TNF- α gene promotion and TNF- α production.
- D. Long glass fibers (17 μ m) are more potent stimulants of signaling pathways and TNF- α production than short fibers (7 μ m), i.e., 2-3 fold more potent.
- E. The increased potency of long fibers in stimulating TNF- α production is explained by surface area.

Effect of IT Exposure to Crocidolite Asbestos on AP-1 Luciferase Reporter Transgenic Mice

Inhibition of Asbestos-induced AP-1 Activation by IP Aspirin Pretreatment

Conclusion III

- A. *In vivo* exposure to crocidolite asbestos induced AP-1 activation in mice.
- B. Pretreatment with aspirin, an antioxidant, inhibited asbestos-induced AP-1 activation.
- C. In vitro models appear to be useful in elucidating signaling pathways for fiber-induced cytokine production.

Acknowledgements

NIOSH

Dr. Jianping Ye

Ms. Patti Zeidler

Dr. Terri Blake

Dr. Xianglin Shi

Dr. William Jones

Ms. Diane Schwegler-Berry

Mr. Gregory Deye

Mr. Changhong Li

Dr. Paul Baron

Mr. Tony Martinez

Dr. Min Ding

Dr. Val Vallyathan

West Virginia University

Dr. Yong Rojanasakul Dr. Ningi Cheng